Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation
نویسندگان
چکیده
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results.
منابع مشابه
Simulating the Fluid Dynamics of Natural and Prosthetic Heart Valves Using the Immersed Boundary Method
The immersed boundary method is both a general mathematical framework and a particular numerical approach to problems of fluid-structure interaction. In the present work, we describe the application of the immersed boundary method to the simulation of the fluid dynamics of heart valves, including a model of a natural aortic valve and a model of a chorded prosthetic mitral valve. Each valve is m...
متن کاملImmersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions
The immersed boundary (IB) method is a mathematical and numerical framework for problems of fluid–structure interaction, treating the particular case in which an elastic structure is immersed in a viscous incompressible fluid. The IB approach to such problems is to describe the elasticity of the immersed structure in Lagrangian form, and to describe the momentum, viscosity, and incompressibilit...
متن کاملA fixed-mesh method for incompressible flow-structure systems with finite solid deformations
A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on a fixed Eulerian mesh. The so...
متن کاملMultiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids
In this work, a mixed Eulerian–Lagrangian algorithm, called ELAFINT (Eulerian Lagrangian algorithm for interface tracking) is developed further and applied to compute flows with solid–fluid and fluid–fluid interfaces. The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving boundaries on a fixed Cartesian grid. The field equations are ...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کامل